SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications

نویسندگان

  • Ahmad Karim
  • Rosli Salleh
  • Muhammad Khurram Khan
چکیده

Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User Interface Design in Mobile Educational Applications

Introduction: User interfaces are a crucial factor in ensuring the success of mobile applications. Mobile Educational Applications not only provide flexibility in learning, but also allow learners to learn at any time and any place. The purpose of this article is to investigate the effective factors affecting the design of the user interface in mobile educational applications. Methods: Quantita...

متن کامل

MBotCS: A Mobile Botnet Detection System Based on Machine Learning

As the use of mobile devices spreads dramatically, hackers have started making use of mobile botnets to steal user information or perform other malicious attacks. To address this problem, in this paper we propose a mobile botnet detection system, called MBotCS. MBotCS can detect mobile device traffic indicative of the presence of a mobile botnet based on prior training using machine learning te...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

Using Mobile Phone Applications in Teaching and Learning Process

This quantitative, qualitative study investigates the usage of mobile phone applications in teaching and learning processes. The study aims to identify the benefits, difficulties, and resolutions of using mobile phone applications. The study was conducted in the English Department at Hebron University at the second semester of the academic years 2015/2016. The study focuses on the Business Engl...

متن کامل

On the Analysis and Detection of Mobile Botnet Applications

Mobile botnet phenomenon is gaining popularity among malware writers in order to exploit vulnerabilities in smartphones. In particular, mobile botnets enable illegal access to a victim’s smartphone, can compromise critical user data and launch a DDoS attack through Command and Control (C&C). In this article, we propose a static analysis approach, DeDroid, to investigate botnet-specific properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016